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1 Summary

The goal of our work has been to develop a solid theoretical framework for the problem of
learning from examples, in order to evaluate Neural Network architectures and develop new
powerful parailel techniques and algorithms. Our approach was based on the formulation of the
problem of learning from examples as a problem of approximation of multivariate functions from
sparse data, in such a way a to take advantage of existing large body of results in function
approximation theory and regularization. Our work has been successfull beyond our original
expectations at the time we wrote the proposal. We have developed a sizable body of theoretical
results and applications. Several projects, many outside our own group, are now pursuing
different aspects of the theory, and are developing algorithms and applying the technique to
practical domains. Below are some of the specific accomplishments:

" Theory of regularization networks

" Regularization networks contain RBF as a special case

" Extension of the theory: moving centers and task-dependent clustering

" Extension of the theory: moving centers and task-dependent dimensionality reduction

" A new optimization algorithm (for learning) and its parallel implementation on the
Connection Machine

" Theory and numerical experiments on the relation HBF-multilayer perceptrons

" Sample complexity and function spaces

" Demonstration of new techniques for the following applications:

- 3-D object recognition

- Hyperacuity

- Autonomous indoor navigation

Real 3-D object recognition

- Time-series forecasting.
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2 Where We Are Today

2.1 Present Directions of Research

The approach to learning that we have been developing over the past two years regards learning
from examples as a problem of approximating a multivariate function from sparse data - the
examples. We have developed a technique that has its roots in the classical theory of function
approximation, and which has close and often illuminating relations with other fields such as
statistics. Our approach is based on regularization theor, it is strictly related to the
approximation technique called Radial Basi Functions and is equivalent to a certain class of
multilayer networks.

One of the best ways to gauge how successfull our project has been is to look at the present
activity that has originated from it. In our group and together with collaborators in Israel,
Germany, England and Italy, we are now following four main directions of work.

2.2 Directions of Present Research

1. Developing the theory and related mathematical issues

2. Developing efficient algorithms for learning, including hardware implementations

3. Applying the technique to several problems such as:

* Visual object recognition

* Time-series analysis

* Computer graphics

* Autonomous navigation and control

• Synthesis of early vision algorithms

4. Exploring possible implications for how the brain might work, and in particular:

* How the brain may recognize 3-D objects

* Whether simple, high performance visual tasks - such as hyperacuity tasks - depend
significantly on a fast learning process.

3 Technical Milestones

We will first review the basic technique that we have developed and then describe some of our
most recent results. Additional details can be found in the papers in the bibliography at the end,
which list work done within our project on learning.
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3.1 The HyperBF Technique

HyperBF networks (Poggio and Girosi, 1990, 1990a, 1990b, 1990c) are a class of feedforward
networks with one layer of hidden units that compute functions of the form:

f(x) = F, c.G(Ilx - ta)Ilw) + p(x) (1)
a=1

where G is any conditionally definite positive function, p(x) is a polynomial of low degree, W is a
square matrix and 11 -1w indicates the following weighted norrm:

IIXIv = Wx. Wx. (2)

The coefficients c., the "centers" t. and the matrix W are found during the learning stage, by
minimizing a measure of the error between the network's prediction and each of the examples.
After learning, the centers of the basis functions are similar to prototypes, since they are points in
the multidimensional input space. Updating the centers during learning is therefore equivalent to
modifying the corresponding prototypes, and corresponds to task-dependent clustering. Finding
the optimal weights W for the norm is equivalent to transforming appropriately (for example,
scaling) the input coordinates, and corresponds to task-dependent dimensionality reduction.

3.2 Theory

Our main line of investigation has been devoted to the problem of selecting an approximation
technique, i.e., a specific network, because this is one of the choices that strongly influences the
final performance. However, once an architecture has been chosen, there are other relevant
problems that must be solved. One of these is related to the fact that in many cases the available
data may contain outliers, and standard procedures (such as least square estimation) must be
modified in this case. Here we show some results on these two topics.

3.2.1 Network Selection

Whenever we want to use some kind of network to solve a problem, two fundamental questions
arise: a) how many hidden units are there? b) which activation function should the hidden units
compute? We considered the first question under the assumption of an infinite number of
examples. The number of units needed to approximate a function within a certain accuracy
depends on the choice of the activation function, and on some characteristics of the function to be
approximated, such as its dimensionality and degree of smoothness. For many classical spaces of
functions and choices of the activation function, the dependence of the number of hidden units on
the dimension is exponential, leading to the well-known phenomenon of "the curse of
dimensionality". However, if some constraints are imposed on the target functions, better rates of
convergence can be obtained. Using a result by Jones (1990) about the rate of convergence of
iterative sequences in Hilbert spaces, we proved (Girosi and Anzellotti, 1991) that there exist
classes of functions that can be approximated by a network of n radial units with an L 2 error of
order O(1 ). The dimension of the space influences the result only through a multiplicative

constant, and the result is constructive in the sense that it shows an iterative algorithm that can
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achieve this rate of convergence. Similar results have been obtained by Barron (1991) for
multilayer perceptrons, and this raises the question of the choice of the activation function, on
which we did some experimental and theoretical work.

3.2.2 Network Selection: A comparison of MLP, HBF and Other Networks

Minoru Maruyama, Federico Girosi and Tomaso Poggio (1991a) have compared in numerical
experiments several different activation functions, and therefore different techniques for learning
from examples, considered as schemes for approximating multivariate functions from sparse data.
In particular they considered multilayer perceptrons with one layer of sigmoidal hidden units,
flexible Fourier series, multilayer perceptrons with exponential activation functions, Radial Basis
Functions, and different forms of HyperBF networks. They have characterized their
approximation performance (equivalent to generalization power) according to L 2 and L,
measures on sparse data from several different continuous functions of two and more variables,
using several different training techniques. All the techniques, except that using exponential
activation functions, performed well on average, and this led us to investigate possible relations
between multilayer perceptrons and Generalized Radial Basis Ftuictions (GRBF).

3.2.3 Network Selection: A Connection between MLP and HyperBF Networks

The main point of another project of Maruyama, Girosi and Poggio (1991b) has been to show
that for normalized inputs, muiltilayer perceptron networks are radial function networks (albeit
with a non-standard radial function). This provides an interpretation of the weights w as centers
t of the radial function network, and therefore as equivalent to templates. This insight may be
useful for practical applications, including better initialization procedures for MLP. Maruyama et
al. also analyzed the relation between the radial functions that corresponds to the sigmoid for
normalized inputs and well-behaved radial basis functions such as the Gaussian. In particular,
they observed that the radial function associated with the sigmoid is an activation function that
is good approximation to Gaussian basis functions for a range of values of the bias parameter.
The implication is that a MLP network can always simulate a Gaussian GRBF network (with
fewer parameters), but the converse is true only for certain values of the bias parameter.
Numerical experiments indicate that the constraint is not always satisfied in practice by MLP
networks trained with backpropagation. Mutucale GRBF networks, on the other hand, can
approximate MLP networks with a similar number of parameters.

3.2.4 Dealing with Outliers

Given n noisy observations gj of the same quantity f, it is common usage to give an estimate of f
by minimizing the function =1 (gi -) 2. From a statistical point of view, this corresponds to
computing the Maximum Likelihood estimate, under the assumption of Gaussian noise. However,
it is well known that this choice leads to results that are very sensitive to the presence of outliers
in the data. For this reason it has been proposed to minimize functions of the form
E'I V(g, - f), where V is a function that increases less rapidly than the square. Several choices
for V have been proposed and successfully used to obtain "robust" estimates. However, a
justification and interpretation for their use is still lacking. We have shown (Girosi, 1991; Girosi,
Caprile and Poggio, 1991) that for a class of functions V, which we call "effective potentials,"
using these robust estimators corresponds to assuming that our measures are affected by a
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Gaussian noise whose variance is a random variable with a given probability distribution.
Depending on the probability distribution of the variance of the noise, different shapes for V are
obtained. Girosi (1991) gives characterization of the class of effective potentials in terms of
positive definite functions in Hilbert spaces.

3.3 Parallel Algorithms

Learning the coefficients c., the W matrix and the t., that minimize an error functional of the
L2 type on the set of examples is a non-convex minimiation problem. Gradient-descent is
probably the simplest approach for attempting to find the solution to this problem. We have
explored an even simpler optimization technique that can be successfully used to solve this class
of problems (Caprile, Girosi and Poggio, 1991). Our algorithm combines aspects typical of many
genetic algorithm, with others typical of random descent techniques (Caprile and Girosi, 1990)
into the concept of adaptive noise. We have tested the algorithm numerically in a variety of cases,
and the results have been compared to the ones obtained by using a standard gradient descent
with adaptive step technique. In all the cases considered, the best local minima were found by the
nondeterministic algorithm, and preliminary experiments suggest that this may also hold true for
a class of minimization problems wider than the one we have considered.

3.4 A Theory of How the Brain Might Work

We have proposed a quite speculative new version of the grandmother cell theory to explain how
the brain, or parts of it, might work. In particular, we have analyzed how the visual system may
learn to recognize 3-D objects. The model would apply directly to the cortical cells involved in
visral face recognition. We have also outlined the relation of our theory to existing models of the
cerebellum and of motor control. Specific biophysical mechanisms can be readily suggested as
part of a basic type of neural circuitry that can learn to approximate multidimensional
input-output mappings from sets of examples and that is expected to be replicated in different
regions of the brain and across modalities. The main points of the theory are:

" The brain uses modules for multivariate function approximation as basic components of
several of its information processing subsystems

" These modules are realized as HyperBF networks (Poggio and Girosi, 1990ab)

" HyperBF networks can be implemented in terms of biologically plausible mechanisms and
circuitry.

3.4.1 Fast Perceptual Learning in Visual Hyperacuity

We are beginning to apply the HyperBF technique to explain the fast acquisition of visual
abilities in simple tasks from a few examples of the task. Tomaso Poggio, Manfred Fable and
Shimon Edelman (1991) were able to show that networks which solve specific visual tasks, such as
the evaluation of spatial relations with hyperacuity precision, can be easily synthesized from a
small set of examples using the HyperBF technique. They observe that in many different spatial
discrimination tasks, such as determining the sign of the offset in a Vernier stimulus, the human
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visual system exhibits hyperacuity-level performance by evaluating spatial relations with the
precision of a fraction of a photoreceptor's diameter. They propose that this impressive
performance depends in part on a fast learning process that uses relatively few examples and
occurs at an early processing stage in the visual pathway. They were able to show that this
hypothesis is plausible by demonstrating that it is possible to synthesize, from a small number of
examples of a given task, a simple (HyperBF) network that attains the required performance
level. Then they verified with psychophysical experiments some of the key predictions of this
conjecture. In particular, they proved experimentally that, quite surprisingly, fast
stimulus-specific learning takes place in the human visual system and this learning does not
transfer between two slightly different hyperacuity tasks. This may have significant implications
for the interpretations of many psychophysical results in terms of neuronal models.

3.5 Applications

We have applied the HyperBF technique to several different domains:

* 3-D object recognition

a Synthesis of algorithms for early visual tasks, such as hyperacuity tasks

* Computer graphics

e Time-series analysis

* Adaptive control

e Indoor vision-driven autonomous navigation.

We briefly discuss two of of these applications.

3.5.1 Object Recognition

Edelman and Poggio (1990) applied the HyperBF technique to the problem of 3-D object
recognition with promising results. They were able to synthesize a module that can recognize an
object from any viewpoint after it learns its 3-D structure from a small set of 2-D perspective
views, using the HyperBF network scheme. Their results were obtained with simulated wireframe
objects, and assumed that the problems of feature extraction and matching were already solved.
The problems of occlusions and spurious features were ignored. We have now successfully
extended the technique to work with gray level images of real paper clips (Bruneli and Poggio,
1991).

It is interesting to mention that psychophysical experiments carried out on wire-frame objects
and other objects confirm that "immediate" 3-D object recognition in humans seems to be based
on a process of interpolation of 2-D views rather than the use of 3-D models.

We have also began to apply HyperBF networks to the problem of recognizing faces, using a small
set of images of any given face as examples. This assumes that a few views for each person are
available to train the network (our estimate for a generic 3-D object is between 20 and 100 2-D
views). The theoretical low limit is two views (for the visible aspect) (Basri and Ullman, 1990;
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Poggio, 1990a). We have therefore begun work aimed at characterizing how recognition from just
one 2-D view may be accomplished if views of other ("prototypical") objects of the same class are
available (Poggio, 1991). Clearly one single view of a 3-D object (if shading is neglected) does not
contain sufficient 3-D information. If, however, the object belongs to a class of similar objects
(prototypes) of which many views are known, it seems possible to make reasonable extrapolations
and to guess correctly other views of the specific object from just one 2-D view of it. We are
certainly able to recognize faces turned 20-30 degrees from the front from just one frontal view,
presumably because we exploit our extensive knowledge of the typical 3-D structure of faces. At
this point one can pose the following problem: from one 2-D view of a 3-D object, generate other
views, ezploiting knowledge of views of other objects of the same class. If this can be done, we can
then use Poggio and Edelman's technique - and its extensions - by using the views we have
generated as a training set. The point is to generate artificial examples of deformations for the
specific object of interest by extracting information about allowed deformations from a set of
examples of objects of the same class, using standard approximation techniques. Poggio (1991)
discusses under which conditions and definitions of class this goal can be achieved.

3.6 Time-Series Analysis

Jim Hutchinson and Tomaso Poggio are engaged in the study of learning architectures, their
parallel implementations, and their applications to large, real world problems in time-series
prediction. The goals of this work are to investigate the potential of parallel implementations to
help with problems of parameter estimation, handling of large problems, and use of previously
intractable methods; to assess the applicability and usefulness of various learning networks to the
problem of time-series prediction; to determine appropriate ways of achieving domain specific
goals in time-series modeling, especially obtaining estimates of model fit (i.e., variance of outputs)
and methods for iterating predictions; and to determine appropriate ways of handling domain
specific problems in time series modeling such as limited sample size, embedding a priori structure
into the learning arcl ecture, and selecting and transforming useful inputs from a collection.

Results to date from this work are fairly preliminary. We have shown that the Radial Basis
Function class of learning methods can be efficiently implemented on the Connection Machine to
solving large problems. We have investigated various mechanisms for embedding the time-series
prediction problem in the Radial Basis Function framework, and have preliminary results
indicating that such systems outperform corresponding traditional linear models on an interesting
class of financial time-series.

3.6.1 Early Visual Tasks

This technology has potential practical implications in terms of vision architectures that can learn
from a set of examples to perform specific visual tasks such as inspection tasks, without explicit
ad hoc programming.
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